3R Ty T

g b

sy

4

8
i

f‘ﬁ:‘

"ﬁ Eh

2

ﬁ:ﬁ i S

g

ey
3
3

SYSTEM AND METHOD FOR LEAST WORK PUBLISHING
COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains material, which is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure, as it appears in the
Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights
whatsoever.
BACKGROUND OF THE INVENTION
The invention disclosed herein relates generally to the generation of web sites that
contain web pages derived from databases and templates. More particularly, the present
invention relates to a system and method whereby a content management system can quickly
determine which web pages have become stale as a result of changes to the content contained in
the underlying database. Once the system makes the determination, it re-creates the stale web
pages with new content. The present system and method allow a business with a web presence to
save time and resources by having the content management system automatically detect stale
web pages. Only then can the system selectively re-create those web pages with newer content,
instead of also re-creating pages that are unaffected by changes to content in the database.
Database driven content management systems are typically used to automate
information management for large-scale, high-volume online operations. Such systems are
capable of generating every page in a web site dynamically, e.g., at run time when the user
requests the page. Dynamic pages are designed to display time-variant, user-dependent
information. Examples of dynamic web pages are personalized mailboxes, customized order

forms, and a web page designed to present a user with his or her favorite news topics. Since the

1 Express Mail No.: EF379137108US



ey o

b= R I

ol

HLT

m,,
"

“Ha,

I

@ @

information and layout of these types of pages changes depending on the time they are accessed,
or who they are accessed by, they must be generated at run time when the user requests the page.
The content displayed by the dynainic page is stored in a database or other data management
system.

A runtime engine interprets the instructions contained within the dynamic page.
Web application servers such as WebLogic and WebSphere provide this runtime engine. The
instructions and variables that make up the dynamic page may be written in a variety of
programming languages or scripting languages or both. Exemplary scripting languages include
JavaServer Pages(JSP), JavaScipt, VBScript, JScript, ASP (Active Server Pages), Python, and
Perl. A piece of program logic written in these languages is broadly known as a ‘template.” The
runtime ehgine interprets/executes these coded instructions at runtime upon request, resulting in
a stream of data. Requests are typically generated from a browser (Internet Explorer, Netscape
Navigator or such) and the result of execution, in the form of stream of data is transmitted back .
to the browser that requested it. The stream of data is generated in a format that is understood by
Web browsers, e.g., HTML (Hypertext Markup Language) or XML (eXtensible Markup
Language).

) Dynamic generation, however, consumes computational resources and time.
Additionally, dynamic generation is not required for web pages displaying content that does not
change with users or time, for example, a research publication. When dynamic generation is not
required, web masters are better served by static pages. A static page is a physical file that is

- stored in a file system, typically with HTML, SHTML or HTM extensions. Upon request, such a
static page is rendered to the requesting browser. Rendering static pages is facilitated by the use

of a web server such as Apache Web Server, IBM Web Server, or Internet Information Server

2 Express Mail No.: EF379137108US



PER

iy,
pest
Batsas

pN
W

20

(IIS). A web server is software capable of reading such files on the file system and transmitting
them across the network to the requesting browser or an equivalent program. Most web servers
employ sophisticated mechanisms such as page caching that provide higher access times for
static pages. Because rendering static pages does not involve computation of the page itself,
static pages can be delivered at higher performance when compared to dynamic delivery.

The overhead involved in the use of static pages arises when their underlying data
is modified. When the underlying data is modified, these static pages become stale and must be
regenerated to reflect the modifications. In a large website consisting of thousands of static
pages, identifying which of the static pages must be regenerated becomes critical. Without this
identification, the system would be often forced to regenerate even those pages whose underlying
data did not change. This sometimes offsets the advantage of the higher performance of static -
pages over dynamic pages. The fact is that the typical content management system is unable to
efﬁciently handle the republication of static pages in volume; specifically, when content in the -
database is changed regularly, these changes could affect tens of thousands of static pages.
Because the content management system cannot determine which static pages are affected by the
changes, it either indiscriminately re-creates current pages along with the stale pages, or it
requires a human operator to manually determine and specify which static pages to re-create. Re-
creating static pages by manually determining which pages are stale can require hundreds of
man-hours.

There is thus a need for a system that can automatically and quickly determine
which static web pages are stale. There is also a need for the system to selectively republish only
the stale pages using current content, instead of republishing the entire site. There is also a need

for the system to optimize the republication process. Such as system makes it possible for

3 Express Mail No.: EF379137108US



20

businesses to benefit from the high performance that they expect when they choose static pages
over dynamic pages.
BRIEF SUMMARY OF THE INVENTION

It is an object of the present invention to provide a system and method for high-
performance content management that automatically determines which static content pages have
become stale as a result of changes to the data in the underlying data source or template.

It is another object of the present invention to provide a solution to the problems
associated with the republication of stale pages, in particular, the problem of having to republish
pages that are not stale.

The above and other objects are achieved by a éystem and method that
architecturally separates system components into three entities: dependency checking software;
templates; a template engine, which simultaneously creates content pages and dependency
records for those pages. Dependency records store information that describes how a content page
is created from the data source by the template and therefore how the content page depends on.
the data source and the template. Dependency records allow the present invention to achieve the
above-mentioned objectives.

The data source is a database or other storage system that is used to store the raw
data. The data source also contains a time stamp for each unit of data, indicating when the data
was created or most recently modified. The raw data is processed by the template engine
executing one or more templates such that a file results. At run time, the file is presented by the
web server to the requesting computer as a static content page.

A template instructs the template engine to process data from the data source in

order to output content pages to disk, e.g., a template specifies which locations in the data source

4 Express Mail No.: EF379137108US



i3

S

il

A4l
omad? o,

et 4

il
W

20

are to be read for the data they contain, and specifies the format and layout of the data by means
of a markup language, such as HTML or XML, although alternative languages are contemplated
by the invention. A template can be programmed to output one content page or many content
pages, each containing different instances of the same class of information. When a template is
first created or later reprogrammed, its compilation date and time are recorded by the content
management system.

The publication process is initiated by the user when he or she instmcts the
system to create a content page and save it to disk, or it can be automatically initiated by the
system upon modification to the data source. The publication process consists of the template
engine executing the tefnplate that is associated with the content page and creating dependency
records for the content page. When the template is executed, it refers to the data source, reads the
required data, retrieves and formats the data, writes both the data and its format to a file, and
saves the file to disk. The file is published when it is saved to disk. Thus, executing a template is
equivalent to publishing a file. Each such file is equivalent to a static content page. At run time,.
when a content page is requested, the web server delivers the appropriate HTML file from the
disk to the requesting computer.

Whereas the HTML file stores the actual data that makes up the content page, its
dependency records store information that describes how this file was created from the data
source by the template and therefore how the file depends on both the data source and the
template. The dependency records will be used by the dependency checking software to run
dependency checks when re-publication is requested. The dependency checking software
compares the information in the dependency records against the data source and the template.

Based on these comparisons, the dependency checking software determines which pages require

5 Express Mail No.: EF379137108US



o

o

I

= R

£

-
Hosasr o

(9}

b

20

republication. Examples of changes could be modifications to the underlying data and changes to
the publishing template since the last publication.

Dependency records created during the initial publication of a file contain the
following types of information for the file:

a) Parameters that are passed to the template. Parameters are name/value pairs of
information that are passed to a template engine for its use during the publication of a specific
file. Parameters are typically used for passing runtime data for the template engine. These might
be presented in the file that is published to the file system or may be used in the program logic. A
parameter can thus affect which data and how data appear in the published file, and hence the
content page. If the parameters to the template change, so does the template’s behavior..
Parameters thus become a part of the dependency check. If for the template, the passed
parameters change after the last publication time of the file, the existing file is deemed to be
stale.

b) Reads made from the data source by the template, e.g., locations in the data
source that are read by the template for the data they contain. Reads include time stamps.

- ¢) Queries that are run on the data source by the template, along with the number
of records that are returned by each query. Later, the query can be performed and the time stamps
for the returned fields will be compared with the time of the file’s last publication to determine if
the file is stale.

d) Which sub-templates, if any, are called by the template. A template can be
programmed to call one er more sub-templates to create parts of the content page or perform
program logic. A template along with all sub-templates that it may call, determine what data and

how the data is presented in the published file, and hence the resulting content page. For

6 Express Mail No.: EF379137108US



[aw)

i

%
it

o

N

Y
i

L
(%))

LA

"

g
B

20

example, all pages in a web site may have a common header. A sub-template that produces the
header would be created. The sub-template would then be called by all templates to place a
header at the top of each file, and hence, each content page. All dependencies of the sub-
templates must be tracked in order for the system to comprehensively check for the need to
republish. Each sub-template is checked for changes through the dependency checking process
when file republication is requested.

e) File publication time, e.g., the date and time that the file is published.

Once the initial dependency records for a file are established, the system can
determine against them whether raw data or templates have since been changed, and hence,
whether a file has become stale as a result.

The components distributed across the system architecture generally work
together as follows:

When a page designer wishes to publish a static content page for the first time, the
designer writes and saves a template to the content management system. The pége designer then
instructs the content management system to publish the file. The content management system
responds by instructing the template engine to execute the template as previously described and
create dependency records as previously described.

The page designer now updates certain data in the data source and saves the
changes. The content management system simuitaneously updates all the time stamps in the data
source for each unit of data that was modified. The page designer instructs the system to re-
publish files. The content management system instructs the dependency checking software to
check the dependencies previously described. The dependency checking software checks for

staleness of the static pages and passes the results to the template engine, which then republishes

7 Express Mail No.: EF379137108US



EIED TR

i

g

el

WAL

only the static pages that were determined to be stale. Once all dependencies for a file are

checked and recorded, the file is said to be cached.

The solutions provided by the present invention solve problems associated with
the prior art through the use of a content management system that automatically detects stale
static content pages. The solution further allows the system to selectively republish only those
static pages that have become stale. The solution further allows the system to minimize the time
it uses to complete the republication process and thus optimize its own performance. The high
performance of such a content management system therefore justifies the use of static pages

when necessary.

8 Express Mail No.: EF379137108US



il

£

i
i

L 0

b
R

.

A ey oy

Znends

20

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is illustrated in the figures of the accompariying drawings which are
meant to be exemplary and not limiting, in which like references are intended to refer to like or
corresponding parts, in which:

Figure 1 is a block diagram presenting a configuration of various components
used for least work publishing in a network environment according to one embodiment of the
present invention;

Figure 2 is a block diagram presenting the dependency records that are created for
use in dependency checking according to one embodiment of the present invention;

Figure 3 is a flow diagram detailing the process of initial publication or
republication of a static content page according to one embodiment of the present invention.

Figure 3A is a flow diagram detailing the process of dependency checking, which
occurs during the processing of republication requests.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

With reference to Figs. 1 through 3A, detailed embodiments of the invention are
now presented. Fig. 1 presents an embodiment of the software elements of the instant invention
in a network environment. The components are configured as follows. Managed content is held
in a database 102 in the form of raw data, such as text, images, video or other digital content.
Templates 112 are executed by the template engine 114 to retrieve raw data from the database
102, format the data, create structured files therefrom, then publish the files to disk. Each file
thus “models” how the data is to be organized and formatted when it is presented as a content

page to the requesting user. During this template execution, the dependency checking software

9 Express Mail No.: EF379137108US



(=

b S Tl

4

Il

]
ekt

20

106 records information about the entire process, starting with data retrieval and énding with file
publication.

Modifying content in the database 102 through use of the content management
software 100 creates the need for republishing the affected content pages 116. A request for
republication can be either initiated by the user, or by an external system or event, or by an
automated task that is triggered to occur at a certain time/interval, or by a.change to the data in
the database 102. The actual method of generating such a request, however, is not limited by and
does not affect the functioning of the present invention. The content management system 100
responds to a republication request by calling upon the dependency checking software to verify if
the republication is indeed required. The dependency checking software 106 performs a
dependency check to determine if any published files 106 have become stale as a result of
changes made to content stored in the database 102 or to the templates 112 used to generate the
published files 116. Based on the results of the check, the dependency checking software 106-
instructs the template engine 114 to republish only the stale files and create new dependency
records 104 for the republished files.

The content management software 100, dependency checking software 106, and
template engine 114 are executed on a server computer. The server comprises a general purpose
programmable digital microprocessor, also referred to as the Central Processor Unit (CPU). The
CPU controls all the data processing functions of the computer. The CPU is electrically coupled
to Random Access Memory, which provides storage for transient data the CPU needs quick
access to. The CPU is further coupled to Read-Only Memory typically containing instructions

used by the computer at startup. The content management software 100, dependency checking

10 Express Mail No.: EF379137108US



i 1]

Londi? i

e

iR

.a::i‘

waretc Haad

iy

oy
foari?

bz

e
i

W

™
B

20

® ®
software 106, and template engine 114 are stored and program code in persistent memory,
transient memory, or a combination of the two.

Managed content is stored in a database 102. The database 102 is preferably
configured with a direct connection to a server computer, such as residing on a fixed storage
device integrally connected to the server. Alternatively, the system utilizes a database 102 or
databases located remotely from the server. Communication between the server and the remote
database 102 is conducted across a network. The server computer further comprises a network
adapter that controls data traffic being received and transmitted by the server.

Multiple database types are contemplated by the invention. The database 102, for

. example, consists of a relational database, an object oriented database, a hybrid relational-object

oriented database, or a flat-file database. Where a relational database is used, managed content is
stored and normalized among one ore more related tables. Tables are organized according to
rows and columns. Columns are also referred to as ﬁe.lds. The intersection of a row and column
is called a cell. Each cell contains a unit of raw data. The data represents a portion of the total site
or page content, which may be text, images, sound, or any other type of digital content. Any unit
of data can be identified by its table name, column name, and row number.

The database 102 also contains a “time stamp” column. Each cell in the column
corresponds to a unit of raw data in the database 102. For newly created data, the time stamp
indicates the creation time of the data. For modified data, the time stamp ipdicates the most
recent modification time of the data.

The template 112 is executed by the template engine 114to retrieve desired data
from the database 102 and save it to a structured file in the file system 116, as previously

described. When a template 112 is created or reprogrammed, its compilation date and time are

11 Express Mail No.: EF379137108US



20

recorded by the content management system 100. The template 112 is a piece of program code
written in a language such as Java Server Pages (JSP), JavaScipt, VBScript, JScript, ASP (Active
Server Pages), Python, and Perl. The template 112 consists primarily of database access methods
and formatting instructions, which are executed by the template engine 114.

The database lookups and associated logic contained in the template 112
determine how the template engine 114 interacts with the database at runtime; the formatting,
typically in HTML or XML, defines how the data represented when this template 112 is
executed. The template 112 is typically written and saved in a designated directory as a file.
Depending on the language used for creating template 112, the template 112 is either pre-
compiled or interpreted at run time. Languages like Java Server pages compile the template 112
just before it is executed for the first time and every time changes are made to the template 112
thereafter.

The template engine 114 executes the template 112 and creates dependency -
records 104a through 104e. With reference to Fig. 2, the dependency records 104a through 104e
are as follows:

One dependency record 104a stores parameters that are passed to the template
engine 114 for its use during the publication of a specific file 117. Parameters are name/value
pairs of information that are passed to a template engine for its use during the publication of a

specific file. Parameters are typically used for passing runtime data for the template engine.
These might be presented in the file that is published to the file system or may be used in the

program logic. A parameter can thus affect which data and how data appear in the published file,

and hence the content page.

12 Express Mail No.: EF379137108US



Y
b

) el
[=)

G e
ik

g5

e

T ERER

‘mn o
hesatt

...,..
I

il
W

T

20

® ®

Another dependency record 104b stores reads made from the database 102 , e.g.,
which cells in the database 102 are read by the template engine 114 for the data they contain.

Another dependency record 104c stores queries that are run on the database 102
by the template engine 114, along with the number of records that are returned by each query.
The syntax of a query is SELECT COLUMNA, COLUMNB, ... FROM TABLE WHERE
CONDITION. The column names, table name, and WHERE clause are stored as a dependency
for each query performed by the template.

Another dependency record 104d stores information about which sub-templates, if
any, are called by the template 112.

Another dependency record 104e stores the template execution time, or
alternatively, the file publication date and time.

Fig.3 comprises a flow diagram presenting the publication and dependency
checking processes. Users create or re-program a template 300. The content management system
records the template compilation time 302. The user or an automated system submits a request -
304 to the content management system to publish content pages. The content management
system responds by passing the user’s request to the dependency checking software 306. The
dependency checking system runs a test 308 to determine if dependency records exist 310. If
dependency records do not exist for the content page that is to be published, the dependency
checking system determines that the content page is being published for the first time, and
invokes the template engine to execute the template 312 and to create dependency records for the
content page 314. If, however, dependency records are found the dependency checking system is

invoked to determine if the page is out of date 316.

13 Express Mail No.: EF379137108US



1
S

{l
i

1

e TE

aas

g

e,

P

Ty
(9}

20

® ®

Turning to Fig. 3A, dependency checking begins with process 318 and results in
one of two possible outcomes: (1) After the template and all its sub-templates have been
evaluated for dependencies and the dependencies are determined to have not changed, the check
ends in result 336, e.g., the content page is 'not stale' and therefore not republished; (2) If any one
of the checks determines that dependencies have changed 338, the content page is determined to
be stale, dependency checking stops immediately, and the template engine is instructed to
republish the stale content page. This method creates an efficient 'fail fast' system, wherein once
a content page's staleness is determined, the check no longer needs to continue.

Dependency checking begins by comparing the template compilation time against
the publication time of a content page that is derived from the template 318. If the template
compilation time stamp, recorded by the content management system, is more recent than the file
publication time, which is stored in a dependency record, then the template is determined to have

been changed after the content page was last published. The content page is thus determined to

~ be stale and must be republished. This results in the template engine republishing the page 338.

If, however, the compilation time has not changed, then the dependency check continues with
processes 322 and 324, which test the parameters passed to the template.

The parameter checking processes 322 and 324 compare the currently passed
parameters against the previously passed parameters, which are stored in dependency records
created during the last publication of the content page. If process 322 determines that additional
parameters are being passed to the template, then the existing content page is determined to be
stale and must be republished. This results in the template engine republishing the page 338. If,
however, additional parameters are not passed, processing continues to step 324, which checks

the values of passed parameters. If process 324 determines that the value of any passed

14 Express Mail No.: EF379137108US



I

&

i
il

IR O R

!
1

ol B

cxeay
poon

A

(9}

20

parameter has changed, then the content page is determined to be stale and must be republished.
This results in the template engine republishing the page 338. If, however, the parameters have
not changed 324, dependency checking continues to test for changes in queries.
The query checking process 326 compares the results of current queries against
the fesults of previously run queries, which are stored in a dependency record. Process 326 first
runs queries on the database by using the current template. Process 326 then compares the
number of records returned by the current query to the number of records recorded in the
dependency record. If process 326 determines the number of records to have changed since the
last publication of the content page, then the content page is determined to be stale and must be
republished. This results in the template engine republishing the page 338. If, however, process
326 does not result in a determination that the page is stale, the process 326 continues by
comparing the time stamps for the records retrieved by the queries against the file publication
time. If the time stamps of the retrieved records are more recent than the file publication time, -
then modification to the database is determined to have taken place after the content page was -
last published. The content page is thus determined to be stale and must be republished. This
results in the template engine republishing the page 338. If, ho.wever, query check 326 does not
result in republication 338, dependency checking continués to the next process 328, which tests
for changes in the database to those records that are read by the template.

The process 328 for checking database reads uses time stamps to compare the
currently read individual fields in the database against the previously read individual fields,
which are stored in a dependency record. If the time stamp of a current database read is newer
than the creation time of the database reads stored in the dependency record, the data is

determined to have been changed after the publication of the content page. The content page is

15 Express Mail No.: EF379137108US



R AN

i
1

b Aoy

|

}
i

AT EF

i

E R
(%4

20

thus determined to be stale and must be republished. This results in the template engine
republishing the page 338. If, however, the database check 328 does not result in republication
338, dependency checking continues to the next process 330, which tests for the existence of

sub-templates and dependency checks against them.

The template checking processes determines whether one or more sub-templates
exist for a given template, and if so, whether dependencies have changed for the sub-template(s).
Each sub-template is checked for dependencies by the same processes as explained above 318
through 330. Each sub-template in itself may call other sub-templat%:s, and so on. All sub-
templates follow the same pattern of checks resulting in either of the two outcomes, 336 or 338.

After the template and all sub-templates have been evaluated for dependencies
and all the checks result in dependencies not having been changed, the page is deemed 'not stale'

and is not re published. If any of these checks result in 338, the dependency check stops
immediately and instructs the template engine that the page is stale and needs to be republished.

This creates an efficient 'fail fast' system, where in once a page's staleness is determined, the

check no longer proceeds.

While the invention has been described and illustrated in connection with
preferred embodiments, many variations and modifications as will be evident to those skilled in
this art may be made without departing from the spirit and scope of the invention, and the
invention is thus not to be limited to the precise details of methodology or coﬁstruction set forth

above as such variations and modification are intended to be included within the scope of the

invention.

16 Express Mail No.: EF379137108US



	2001-06-20 Specification

